USN

Eighth Semester B.E. Degree Examination, December 2011 Advanced Computer Architecture

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

- 1 a. Define the computer architecture. Explain the response time, throughput, elapsed time and processor clock. (06 Marks)
 - b. Briefly explain the Amdahl's law.

(07 Marks)

c. Two code sequences for a particular machine are considered by a compiler designer.

Instruction class	CPI for this instruction class
Α	1

A	1
В	2
C	3

The compiler designer considers 2 code sequences that require the following instruction counts for a particular high – level language statement.

Code sequence	Instruction counts for instruction class			
	A	В	C	
1	20	10	20	
2	40	10	10	

- i) Which code sequence executes most of the instructions?
- ii) What is the CPI for each sequence?
- iii) Which will be faster?

(07 Marks)

- 2 a. What are the major hurdles of pipelining? Illustrate the data hazard, briefly. (10 Marks)
 - b. With a neat block diagram, explain how an instruction can be executed in 4 or 5 clock cycles in MIPS data path, without the pipeline register. (10 Marks)
- 3 a. List the steps to unroll the code and schedule.

(05 Marks)

- b. Explain how Tomasulo's algorithm can be extended to support speculation.
- (10 Marks)

c. Explain the dynamic branch prediction state diagram.

(05 Marks)

4 a. Explain the basic VLIW approach. List its drawbacks.

(08 Marks)

b. With a neat diagram, explain the steps involved in handling an instruction, with a branch target buffer. Also evaluate how well it works.

(12 Marks)

PART – B

5 a. Explain the different taxonomy of parallel architecture.

(08 Marks)

- b. With a neat diagram, explain the basic structure of a centralized shared memory and distributed memory multiprocessor. (06 Marks)
- c. Explain the snooping, with a respect to cache coherence protocols.

(06 Marks)

6 a. Explain the six basic optimizations.

(12 Marks)

b. With a neat diagram, explain the hypothetical memory hierarchy.

(08 Marks)

- 7 a. Explain the DRAM technology. How do you improve memory performance inside a DRAM chip? (10 Marks)
 - b. Explain the compiler optimizations to reduce miss rate.

(10 Marks)

8 a. Find all the true dependences, output dependences and antidependences and eliminate the output and antidependences by renaming, in the code given below:

(10 Marks)

- b. Write short notes on:
 - i) The Itanium 2 processor
 - ii) IA 64 register model.

(10 Marks)

* * * * *